Thursday, May 16, 2019

Introduction to the Mandelbrot set ~ key to infinity! (repost)





BenoĆ®t B. Mandelbrot (20 November 1924 – 14 October 2010) was a Polish-born, French and American mathematician, noted for developing a "theory of roughness" and "self-similarity" in nature and the field of fractal geometry to help prove it, which included coining the word "fractal." He later discovered the Mandelbrot set of intricate, never-ending fractal shapes, named in his honor.

When he was a child, his family immigrated to France in 1936. After World War II ended in 1945, Mandelbrot studied mathematics, graduating from universities in Paris and the U.S., receiving a masters degree in aeronautics from Caltech. He spent most of his career in both the U.S. and France, having dual French and American citizenship. In 1958 he began working for IBM, where he stayed for 35 years and was an IBM Fellow.

Because of his access to IBM's computers, Mandelbrot was one of the first to use computer graphics to create and display fractal geometric images, leading to his discovering the Mandelbrot set in 1979. By doing so, he was able to show how visual complexity can be created from simple rules. He said that things typically considered to be "rough," a "mess" or "chaotic," like clouds or shorelines, actually had a "degree of order." His research career included contributions to such fields as geology, medicine, cosmology, engineering and the social sciences. Science writer Arthur C. Clarke credits the Mandelbrot set as being "one of the most astonishing discoveries in the entire history of mathematics."

[Source: Wikipedia. First posted 13 July 2014]